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J. Phys. A: Math. Gen. 17 (1984) 3459-3476. Printed in Great Britain 

An example of phase holonomy in WKB theory 

Michael Wilkinson 
H H Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol, BS8 lTL, U K t  

Received 4 June 1984 

Abstract. This paper discusses the application of WKB theory to Harper's equation 

$"+, + $n-, +2a cos(2.rrpn +SI$, = E$", 

in the case in which p is very close to a rational number, p / q .  
The W K B  wavefunction fo r  this system is a vector valued quantity, proportional to an 

eigenvector U of a matrix H ( x ,  p ) ,  which is parametrised by the phase space coordinates 
x and p .  The complex phase of U is determined by a non-holonomic connection rule; 
when transported around a cycle and in phase space, U is multiplied by a phase factor 
ely(. This phase change manifests itself as a modification of the Bohr-Sommerfeld quantisa- 
tion condition. 

1. Introduction 

This paper describes an unusual form of Bohr-Sommerfeld quantisation, involving a 
holonomy argument. As well as being interesting in its own right, the method discussed 
here can be applied to the difficult problem of finding the Bohr-Sommerfeld quantisa- 
tion condition for Bloch electrons in a magnetic field. The system treated in this paper 
is a simplified model for this problem, which is often called Harper's equation. This 
model will be introduced in 0 2; the remainder of this introduction will describe the 
principle of the method. 

For the system considered, the WKB wavefunction can be thought of as a vector- 
valued quantity, given by 

+(x)  = A(x)u(x)  exp - p(x ' )  dx'  (1.1) (AI" ) 
where p ( x )  and A(x)  are slowly varying functions, and the vector U is a solution of 
the eigenvalue equation 

A 

H(x,  p ) u  = &U. ( 1.2) 

In equation (1.2), E is the energy of the solution +(x),  and a complex Hermitian 
matrix which is a function of two parameters x and p .  Since the energy E = E(X, p )  
is a constant for a given solution, equation (1.2) gives both U and p as functions of x, 
as in (1.1). The curves in the x-p plane defined by E = E(X, p )  =constant are called 
phase trajectories. When the phase trajectories given by (1.2) are closed orbits, then 
a solution +(x) must remain single-valued when it is traced around the phase trajectory. 

t Address after September 1st 1984: Department of Physics, California Institute of Technology, Pasadena, 
California 91 125, USA 
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This condition is only satisfied for certain values of E, which are determined by a 
Bohr-Sommerfeld quantisation condition. 

In equation (1.2), the eigenvector u(x, p )  is determined only up to a complex-valued 
multiplying constant, or, if U is assumed to be normalised, up to a complex phase 
factor el’. This phase factor can be determined by requiring that the amplitude A(x) 
in ( 1 . 1 )  be real. Given this condition on A(x),  it will be shown how the WKB theory 
for the system leads to a connection formula, by means of which the vector U can be 
transported through the phase space with its phase fully determined. It turns out that 
this phase connection is non-holonomic, so that when U is transported clockwise 
around a closed circuit in phase space, it is multiplied by a phase factor e”. 

This phase factor affects the Bohr-Sommerfeld quantisation condition. Consider 
the phase change of the solution (1.1) after making one circuit of a closed phase 
trajectory. This has contributions from the oscillatory term, from a pair of turning 
points where p(x)  = 0 and A(x)  diverges, plus a contribution y ( E )  from the phase 
factor evaluated for a phase trajectory of energy E. The condition for the wavefunction 
$ to be single valued is therefore 

or 

p(x)  dx  = [27r(n +;) - y ( E n ) ] f i .  

This equation ( I .4) is the Bohr-Sommerfeld quantisation condition determining the 
eigenvalues E ,  of the system. 

The plan of this paper is as follows. Section 2 introduces the system under 
consideration and discusses how WKB theory can be applied to this system. Section 3 
derives an asymptotic formula for the product of a string of slowly varying transfer 
matrices. Section 4 applies this formula to the WKB problem for Harper’s equation, 
and 0 5 obtains the Bohr-Sommerfeld quantisation condition. Section 6 summarises 
the theoretical results and compares them with numerical values, and § 7 discusses the 
connections between this work and recent work on adiabatic theory and the quantised 
Hall effect. 

2. WKB analysis of Harper’s equation 

The system analysed in this paper is Harper’s equation 

(LnTI +CL,-, + 2 a  cos(2nPn +S)$,, = E h ,  (2.1) 

which is frequently used in models for Bloch electrons in a magnetic field, and as a 
model for electrons in an incommensurate potential (Harper 1955, Simon 1982). As 
pointed out by Sokoloff (1981), solutions of (2.1) can be obtained by a W K B  method 
whenever P is sufficiently close to a rational number, p / q  (where p and q are coprime 
integers). The condition for WKB theory to be applicable is 

(2.2) I 4 *AP I << 1 9 AP = P - P I %  

and for almost all p, there exist values of p / q  for which 1q2Apl is arbitrarily small. 
This follows from a property of continued fractions (Khinchin 1964). 
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Before describing how WKB theory can be applied to (2.2), it will be useful to 
consider the case p = p / q ,  so that the coefficients of the difference equation (2.1) are 
periodic with period q. In this case, therefore, Bloch's theorem applies and exact 
solutions can be obtained; the Bloch solution has the form 

$, = eiknu,(S, k), (2.3) 

u n  +q = U,. (2.4) 

where U, is periodic with period q 

This result can also be written in terms of a set of Fourier amplitudes for U, 

which will prove more useful for some purposes. 
From equation (2.1)¶ it can be seen that the q-component vectors U, or a ,  can be 

determined as eigenvectors of a q x q complex Hermitian matrix. To distinguish these 
matrices and vectors from some two-component vectors and 2 x 2 matrices which will 
be introduced later, a quantum mechanical notation will be used ; 

A(& k) 146, k)) = E Iu (4  k)), (2.6) 

where the matrix elements of 2 are given by 

It is fairly easy to show that the eigenvalues E are periodic in both S and k with 
period 27r/q; in fact the q eigenvalues are given by the equation 

f ( E )  =cos qk +a¶ cos q S ,  (2.8) 

wherefis a qth degree polynomial (Wilkinson 1984). The q different sheets of k) 
normally do not touch each other. When q is even, however, one pair of sheets of 
~ ( 8 ,  k) does touch at isolated points in the S -  k plane (Bellissard and Simon 1982). 

There is another, complementary, method for analysing equation (2.1) when f3 is 
rational (i.e. Ap = 0); this is the transfer matrix method. It is easy to see that equation 
(2.1) can be written in the form 

where 

f ( x ,  E )  = ( E  -2; COS x ;I), 

x, = 2 v p n  +6. (2.10) 
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Consider a transfer matrix G ( x ,  E )  describing a ‘jump’ of q steps 

(2.1 1 )  

where now 

G ( x , E ) = f [ x + ( q - l ) p , E ]  . . .  f ( x + p ,  E)T(x,  E ) ,  

x, = 2 vpqn  + S = 2 r p n  + S.  (2.12) 

Now the transfer matrix fi is independent of n. The eigenvalue condition on E is 
then just that the eigenvalues of the transfer matrix 6f lie on the unit circle. Since 
and therefore fi, both satisfy 

det f =  det fi = 1, (2.13) 

this condition becomes 

2 c o s k = T r f i ( S , E ) .  (2.14) 

Having found the eigenvalues E(6, k )  using (2.14), the wavefunctions can be generated 
by means of the formula (2.9). 

To summarise: there are two approaches to solving (2.1) when p is rational; one, 
which will be termed the Bloch picture, involves solving a q x q Hermitean eigenvalue 
equation, the other, which will be termed the Floquet picture, involves considering 
products of q 2 x 2  transfer matrices. The rest of this section will show how W K B  

methods can be applied when p is close to a rational number. First the application 
of the W K B  method within the Bloch picture will be described. This has previously 
been attempted by Sokoloff (1981); it cannot be carried through to yield a full solution, 
but is worth describing since it is easier to understand because it is closer to ordinary 
WKB methods. Finally, the application of the W K B  method in the Floquet picture will 
be described. 

When Ap 
On a ‘global’ 
region of the 

where 

This is harder to visualise, but does lead to a full solution of the problem. 
is small, the solution must ‘locally’ look like a solution of the form (2.3). 
scale, however, there is a slow change in the phase parameter 6 ;  in the 
amplitude (Cl, the effective phase 6’ is 

a‘= 6 + nh/q ,  (2.15) 

h = 2 TA&. (2.16) 

The symbol A is used in (2.15) because this quantity will be the small parameter of 
the WKB theory. In the neighbourhood of the amplitude (Cl,, the solution resembles a 
solution of the form (2.3) or (2.4) with S replaced by 8’. 

The Bloch wavevector, k, now varies slowly with n: the energy E is still given by 
equation (2.7), and is a constant for a given solution, so that (2.7) defines an implicit 
relationship between k and S.  The energy E should now be considered to depend on 
A as well as S and k, 

(2.17) 

since p in (2.7) depends on h. The term of order A in (2.17) will be important in what 
follows. 

E = &(a’, k ;  h )  = & g ( S ’ ,  k) +he , (  S’, k ) .  
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Following Sokoloff (1981), equation (2.1) is written in the form 

+(x + h / q )  +$(x-h/q)  + 2 a  C O S ( ~ T ~ X / ~  + x - x ~ ) $ ( x ) =  E+(x), 

where 

xo= (277p6lq) mod 277, ILn = + ( x n ) ,  xn = n R / q  +6. (2.19) 

By comparison with equation (2 .5 ) ,  this suggests a trial solution of the form 

(2.18) 

q - l  
G(x) = A ( x )  exp(iS(x)/h) a, (x )  exp(2ripmxlh). (2.20) 

m=O 

This trial solution corresponds to the abstract solution introduced in equation ( 1.1). 
The role of the vector U in (1.1) is played by the set of Fourier coefficients a, in (2.20). 
These coefficients are easily shown, by substituting (2.20) into (2.18), to satisfy the 
equation 

a e-'"a,+, + a  eixa,-, +2  cos[(2~pm +S')/q]a, =Ea,,  (2.21) 

which is an eigenvalue equation for E corresponding to (1.2). 
The next step in Sokoloff's approach to the W K B  theory of Harper's equation is to 

expand $ ( x i h / q )  in (2.20) in powers of h,  and insert the result into (2.18). Unfortu- 
nately, this does not lead to a consistent result: if the calculation is carried out correctly 
it is found that q independent equations are obtained which A ( x )  should satisfy. (The 
solution which Sokoloff obtains for A ( x )  is easily found to be incorrect.) 

It turns out that a full solution of the W K B  problem can be obtained in the Floquet 
picture, however. The transfer matrices fi(x, E )  introduced in (2.11) are now no 
longer independent of n, but provided (2.2) is satisfied, these transfer matrices are at 
least slowly varying. It is possible to calculate the product of a string of slowly varying 
matrices ; 

6 ( x , X f ; f i ) = f i ~ ( x , h ) l l ; j , ( x - h , h )  . . .  f i E ( X ) + h , h ) G l ( x ' , h ) ,  

f i E ( x ,  h )  = f{x + 2 ~ p ( q -  l ) /q  + [ ( q  - l)/q]h, E } .  . . f ( x  + 2 ~ p / q  + h / q ,  E ) f ( x ,  E ) ,  

f(x, E )  = (2.22) 

A simple formula for the product 6(x ,  x'; h) will be derived in 4 3. 
Before going on to discuss the W K B  theory in detail, it will be helpful to describe 

briefly the final results of the calculation. 
Suppose that p is a low denominator rational number, Po = p /  q. The spectrum 

then consists of q bands (the centre two bands touch if q is even), and E is a periodic 
function of the Bloch wavevector k and position parameter 6 ;  E = ~ ( 6 ,  k), with q 
branches, one for each band. 

When ,B is close to Po, /3 = Po +h/277q, then WKB theory can be applied and S and 
k become the position and momentum coordinates of the phase-space (8  + x, qk + p = 
S'). The dispersion relation E = ~ ( 6 ,  k) for a given band becomes the classical Hamil- 
tonian; H ( x ,  p )  = E ( X ,  k q ) .  

When the phase trajectories (contours of E = H ( x ,  p ) )  are closed orbits, the energies 
of the eigenstates are restricted by a Bohr-Sommerfeld quantisation condition. Some 
contours of a typical H ( x , p )  are shown in figure 1 for the case a = 1, when (by 
symmetry) all the phase trajectories are closed orbits. Each of the q bands of the 
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Figure 1. Phase trajectories of the classical Hamil- 
tonian when a = 1. All the phase trajectories are 
closed orbits. 

1 1 1 1 1  I I 1 1 1  
( b )  

Figure 2. ( a )  Bloch bands of the commensurate 
system, p = p / q ,  become Bohr-Sommerfeld quan- 
tised levels when p is changed by a small amount. 
( b )  The Bohr-Sommerfeld quantised levels are in 
practice broadened slightly by tunnelling effects. 

spectrum is then split into a number of Bohr-Sommerfeld quantised levels. This 
situation is shown schematically in figure 2(a) .  

These Bohr-Sommerfeld quantised levels are not truly discrete ; since the classical 
Hamiltonian H(x, p )  is a periodic function of x and p ,  the energy levels are broadened 
slightly by tunnelling between degenerate states, as illustrated schematically in figure 
2( 6).  These tunnelling effects are discussed in detail in Wilkinson (1984) for the case 
po=O. Since the broadening of the levels due to tunnelling vanishes very rapidly as 
f i + O ,  as 

Etunnelling ex~(-constant/fi), (2.23) 

it does still make sense to obtain an asymptotic formula for the Bohr-Sommerfeld 
quantisation condition. 

3. Adiabatic matrix strings 

This section derives a formula for the product of a string of slowly varying matrices, 
fi. An asymptotic formula is obtained for the product 6, defined by 

Ix - X'I K 
&-=- 

f i '  
G(x, x'; h )  = n f i (xlf ,  fi), 

n = O  
(3.1) 

X I ' =  x ' t n h  

i.e. 

G(x, x'; f i )  = f i (x ,  fi)fi(x-fi, fi)  . . . f i (x ,+f i ,  fi)M(x', fi) ,  

in the limit f i +  0. Note that the matrices fi depend on the slowness parameter of the 
adiabatic change, fi, as well as the variable x. 



Phase holonomy in W K B  theory 3465 

It is assumed that the matrices f i(x, h) can be diagonalised 

G(x, h)  = R-yx, fi)d(x, h)R(x, h) ,  (3.2) 

where d(x, h) is diagonal, and that all the eigenvalues are distinct and lie on the 
unit circle. 

Now (3,l) can be written 

&(x, x'; h) = R-'(x, h)J(x, x'; h)R(xf, h )  (3.3) 
where 

g(x, x'; fi) = &x, h)[i + h  f(x - h, f i) ld(x - h, h)  

x[ i+hP(x-2h,h) ]  * .  . [ i+hf (x ' ,h) ]~(x ' ,h) ,  (3.4) 
and 

i +fif(x, h) = R(x +h,  h)R-f(x, fi). (3.5) 

Throughout the calculation presented here, it will be sufficient to use the approximation 

f ( x )  = [dg(x, h)/dx]R'-'(x, h) +O(h) 

= [dR(x, O)/dx]R-'(x, 0) +O(h). (3.6) 

(The second equation of (3.6) shows that, when calculating f, the dependence of 2 
on fi can be neglected and will not be shown in subsequent equations.) Now, using 
the notation 

~ o ( X , X ' ; f i ) = d ( x , ~ ) d ( X - h h , h )  . .  . d(xl+fi,h)fi(x',h), (3.7) 

and ordering the expansion of equation (3.4) in powers of fi 

i ( x ,  x'; R )  =g0(x, x'; fi) + h  1 J0(x, ~ ~ ~ + f i ) f ' ( ~ ~ ~ ) g ' ~ ( ~ " ,  x'; h )  + O ( h 2 V 2 ) ,  (3.8) 
K 

n = O  
x " = x ' + n f i  

leads to an exact but implicit equation for g' 
N 

g'(x, x'; h )  = &(x, x'; h ) + h  1 &(x, X"+h,  h)f(x")i(x, x'; h). (3.9) 
n = O  

x " = x ' + n h  

An asymptotic solution of (3.9) will now be sought in the form 

g'(x, x'; h )  =j(x, x')&(x, x'; h), (3.10) 

where f(x, x') is diagonal. This trial solution is a? adiabatic approximation; it expresses 
the expectation that when h is small, so that M varies slowly, an eigenvector ui(x') 
of M(x', h )  becomes, upon multiplying by G(x, x'; h) ,  the corresponding eigenvector 
ui(x) of M(x, fi). Before going any further, it is useful to define diagonal matrices s' 
and v' as follows 

d(x, h)  = exp[iSf(x, h)], (3.1 1 )  

(3.12) 
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Now, substituting (3.10) into (3.9), and making use of the definitions (3.1 I ) ,  (3.12) 

x‘; ’) -goIJ(x, ”; ’) 

= h g,,(x, x“+fi ;  h)V;,(x”)g,,(x”, x’; h)J;(X”, x’) 
x” 

= h exp[fi(S:(x) +S:(x’))] c exp[(i/h)S,(x, x”+h/2 ;  fi)]V,J(x”)A(x”, x’) 
X”  

xexp[(i/h)SJ(x”+h/2, x’; h ) ]  +O(h)  

= exp[fi(S:(x) +S:(x’))] x dx” Vl,(x”)f;(x“, x’) 

xexp[(i/h)(S,(x, x”; h)  +S,(x”, x’; f i ) ) ]+O(h) .  (3.13) 

For terms with i # j ,  the integrand in (3.13) contains a rapidly oscillating term and 
gives a contribution of O(h) ,  whereas for i = j it gives a finite contribution. Therefore 

g(x, x’; h )  = g0(x, x’; h )  1 + dx”f(x”,  x’);(x”) +O(h) ,  (3.14) 

since only the diagonal elements of (3.13) remain. This justifies the use of the adiabatic 
approximation (3.10). From (3.10) and (3.14), f satisfies 

[- I: 1 
f(x,  x’) = 1 + dx”f(x”,  x’)v’(x”), - I: 

which gives 

f(x, x’) = exp( 1; dx” I?( x”)), 

(3.15) 

(3.16) 

where both f and v’ are diagonal. Therefore the central result of this section, the 
formula for 6 ( x ,  x’; h), is found to be 

G(x, x’; f i )  = z - ’ ( x )  exp 

(3.17) 
go(x, x’; f i )  = exp[;i(S’(x) + Sf(xr)) l  exp[(i/h)S(x, x’; f i ) ]  +o(h). 

In this result the dependences of some quantities on f i  have not been shown, since 
they are not important at this order of accuracy. 

The remainder of this section will discuss a slight simplification of (3.17) which is 
possible when the transfer matrices preserve some quantity j, which will be called the 
current. This is usually the case in one-dimensional quantum mechanical problems. 
For any two vectors 4, @ the current j is given by 

j 4 . G  = +*Tj+ (3.18) 

(where j is a constant matrix). If j is preserved under the action of a transfer matrix 
k, then 

j , , , ,  = (G4)T*-f(G+) =j+,,, (3.19) 

dx” ;(x”) go(x, x’; h)*(x’) +O(fi),  (I: ) 
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so that M satisfies 

(3.20) 

The transfer matrices introduced in 0 2 will be shown later to have this property. It 
can be shown that properties of fi that are preserved on muhitlying matrices together 
are indeed preserved by the formula (3.17) for the product G;  i.e. if it is real, uni- 
modular, or satisfies the current conservation (3.20) then the approximate formula (3.17) 
for the product also has these properties. 

It will be useful to get an expression for f(x, x’) in terms of the eigenvectors of 
f i ( x ,  h). Let ui(x) and ui(x) be right and left eigenvectors of fi(x, h): 

.. - 
Mui = hilli, uiM = hiui. (3.21) 

The ui are proportional to the columns of 2-I and the ui to the rows of 2, so that 

ui * uj = NiSW (3.22) 

For matrices fi that satisfy (3.20), a useful relationship can be found connecting the 
left and right eigenvectors: from (3.20) it is easy to show that 

(j~~)*~fi = ( j ~ ~ ) * ~ h : - l ,  (3.23) 

so that the eigenvalues and eigenvectors come in pairs, related by 

hi, = A T - ’ ,  uir = ( j U i ) * T .  (3.24) 

Since the eigenvalues hi are all on the unit circle for the transfer matrices considered 
here, 

U, = ( j U i ) * T .  (3.25) 

Now collecting equations (3.16), (3.12), (3.6), (3.22), (3.25), asimple and useful formula 
can be given for f; (x, x‘), in terms of the eigenvector ui(x) 

1 = exp[ -I: dx“(u*TJ du/dx)/(u’*h)l,,. 

= exp[ -j: dX”ju(du,dx)/juu~,,, , 1 
where U = ui(x“) is the ith eigenvector of M (x, h). 

(3.26) 

4. Solution of the WKB problem for Harper’s equation 

This section uses the central results of § 3, equations (3.17) and (3.26), to solve the 
problem of finding a satisfactory WKB theory for Harper’s equation (2.1). 

The WKB solution required is of the form of equation ( 1 . 1 )  

+(XI = A(x)u(x) exp - p(x’) dx’ . ) (4.1) 

Locally, the solution can be described by a set of q amplitudes, either amplitudes of 
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a Bloch function U,, or, equivalently, the Fourier components a,,, of the Bloch function, 
as in equation (2.5). Alternatively, in the Floquet picture, +h and U would be specified 
by just two amplitudes on a pair of adjacent lattice sites. 

In the Floquet picture, by equation (3.17), if the wavefunction +h(x’) is an eigenvec- 
tor e,(x’) at position x’, then at x it is given by 

+(XI = gi(x, x’; h)ui(x) 

=I;(x, x’)goi(x, x’; h)ui(x). (4.2) 

The goi(x, x’; h )  term in (4.2), which can be written 

gdx ,  x‘; h )  = exp[fi(S:(x)+ SXx’))] exp( (i/h) lXx’ dx”S:(x”, h ) ) ,  (4.3) 

can be associated with the oscillatory term in (4.1), and the i ( x ,  x‘) term with the 
amplitude A(x). 

The derivative S’(x, h )  of the ‘action’ S(x, x’, h )  therefore plays the role of the 
momentum p of the phase space. The energy E is given as a function of x( = 8 )  and 
S ’ ( =  kq) by (2.6) and (2.7) in the Bloch picture, or alternatively by (2.14) in the Floquet 
picture. The first order term in h in the relations between E, x and S’ must be retained 
since h appears in the denominator of the argument of the exponential in (4.3). 

It can be seen that the transfer matrix (2.10) satisfies the current conservation 
property (3.20), with 

j = ( O i  i). (4.4) 

The current jd.* can equivalently be calculated for the corresponding q dimensional 
vectors Id), 14) 

jd,S = (414$), (4.5) 
where in the direct representation (by means of the Bloch function, U,) the matrix 
elements of j are given by 

It is also useful to note that the eigenvalues and eigenvectors of the transfer matrices 
G(x ,  E, h )  come in complex conjugate pairs, corresponding to points related by *S’  
in the x-S‘ plane. The eigenvalues and eigenvectors are therefore real when S‘ = 0: 

Y(X, S‘) = u*(x, - S ’ ) .  (4.7) 

If the eigenvectors ui are given as functions of x, then A(x) for the solution (4.2) 
is given by (cf (3.26)) 
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and is in general complex. Alternatively A(x) could be chosen to be real; this condition 
then defines a connection rule for the phases of the eigenvector u ( x ) .  If the u(x) are 
given with some arbitrary phase, then the correct phase is established by means of a 
transformation 

U ( X )  + u’(x) = exp(i+(x))u(x), (4.9) 

so that the current matrix element ju(du/dx)  is transformed according to the equation 

(4.10) j u  (du/dx) + j ~ ~  (du’/dx) = j ,  (du/dx) + i (d4/dx)jUu.  

Then by a suitable choice of +(x),  ju(duldx) can be made to satisfy 

Im(iu’ (du’/dx)) = 0, (4.1 1)  

so that by (4.8), A(x) is now real. 

5. The Bohr-Sommerfeld quantisation rule 

This section derives the Bohr-Sommerfeld quantisation rule (1.3), which is the condi- 
tion for single-valuedness of the WKB solution under continuation around a closed 
phase trajectory in the x, S’ plane. 

In this section it will be useful to consider the eigenvector u’(x, S ’ )  to be a given 
single-valued function defined on the phase plane. If A(x) is to be a real function, 
the eigenvector U ‘  must be multiplied by a phase factor so that the modified eigenvector 
u(x, S ‘ )  satisfies the connection formula (4.1 l ) ,  i.e. 

Im[(ju(au/ax))Ax +(ju,au, ,~+S’l= W~,V,) AX = 0, (5.1) 
for transport of U by a vector AX = (Ax, AS’) in the phase plane. This connection 
(5.1) is non-holonomic, and on transporting U around a closed circuit C in phase 
space, it is multiplied by a phase factor e’?‘, given by 

( j U , V U , / j U ~ U ~ )  * dX 

( 5 . 2 )  

On transporting U around a phase trajectory of energy E, there is thus a phase change 
, where e i r ( E )  

Y ( E )  = Im ( j u ~ v u , I j u . u , )  * dX LE 
= Im fe-, ju’(du’/dx)/ju’u’ dx. (5.3) 

This phase change makes a contribution to the Bohr-Sommerfeld quantisation formula. 
In order to describe correctly the continuation of the solution around the phase 

trajectory of energy E, it is necessary to consider carefully what happens at the classical 
turning points, where S’ = 0 mod 27r. On the lines S’ = 0, the current j,, is zero, since 
by (4.7), u(x, 0) is real. In the neighbourhood of the line S ‘ =  O, juu(x ,  S ’ )  takes the form 

juu = a(x)S’+O(S’’), (5.4) 
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for some function a (x) .  Now consider the form of juvu near the line S ' =  0. Consider 
the result 

j u + A u . u + A u  =juu + 2  Rej,,, + 0 ( A u 2 )  ( 5 . 5 )  

(which uses the fact that the current operator is Hermitian), and take U = u(x, 0) and 
U + A u  = u(x +Ax, AS'). Then using (5.5) and ignoring O(Au2) 

ju+Au,u+Au = 2 Re juAu = 2 Re j u v u .  AX = a (x  +Ax)AS' (5.6) 

Re(juvu) = (O , i a (x ) )+O(x)  + O ( S ' ) .  (5.7) 

so that, near S' = 0 

Now, from (4.8), the amplitude A(x) (constrained to be real) is given by 

Near the line S' = 0, therefore, 

1 -$a(x')/(a(x')S'(x')) . (dS'/dx') dx' (5.9) 

A(x) -- constant[S'(x)]-'". 

Thus A(x) diverges at a classical turning point, xo, where S'=O. Near this point the 
form of the phase trajectory is given by 

S" = constant(x - xo), (5.10) 

so that as xo is approached from within the classically allowed region, A(x) diverges 
as 

(5.1 1) 

(Of course there is not a real divergence of the exact solution, only in the WKB 

approximation; the assumption used in 0 3 that the eigenvalues of the transfer matrix 
are distinct breaks down when S ' = O . )  The divergence of A(x) given by (5.1 1) is of 
exactly the same type as is encountered in ordinary WKB problems at first-order turning 
points, and any of the usual arguments (e.g. continuation in the complex plane, see 
Landau and Lifshitz (1958)) show that an extra phase change of 7r/2 must be included 
for each of the two classical turning points of the phase trajectory. 

The final contribution to the phase change of $(x) is from the phase integral term: 
this is 

A(x) - constant(x - x ~ ) - ' ' ~ .  

S'(x, h )  dx. (5.12) 

As noted earlier, the correction to E(X, s') of first order in f i  must be retained when 
evaluating (5.12), since h appears in the denominator. Collecting together all these 
contributions to the phase gives the Bohr-Sommerfeld quantisation rule for the system. 

'f f i  E(x,S')=E 

2nn = S'( x, h )  dx + 7~ + y (  E ) .  
f i  E ( x , S ' ) = E  

(5.13) 

Finally there are two important points which must be mentioned. Firstly, because 
j,, is zero on the line S'=O, the integrand in the formula for ? ( E )  diverges at the 
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classical turning point as ( X - X ~ ) - ' / ~ .  The integral y ( E )  remains finite, but does not 
tend to zero as E approaches a maximum or minimum of E ( X ,  S') ,  and the phase 
trajectory shrinks to a point. Instead, y ( E )  tends to a finite limit yo at the top or 
bottom of a band. This limiting value of y ( E )  at the band edges is calculated in the 
appendix. 

Secondly, there are some special cases which should be mentioned. When the 
rational number p / q  to which /3 approximates is zero, then both the phase y ( E )  and 
the A dependent corrections to E ( X ,  S ' )  vanish, and the Bohr-Sommerfeld quantisation 
condition takes the usual form. This case is discussed in detail in Wilkinson (1984). 
There are also some simplifications which occur when p /q  = f, and it is only for p / q  
with denominators greater than two that all the effects described in this paper are seen. 

6. Summary and comparison with numerical results 

In this section some comparisons will be made of eigenvalues calculated using the 
Bohr-Sommerfeld quantisation rule with those calculated exactly. Firstly, however, 
the important formulae are collected together and summarised. 

The parameter p in equation (2.1) is written 

P = P o + A P = p / q + h / 2 n q .  (6.1) 

The energy E is considered to be a function E(X, S') of the phase plane coordinates 
x and S'. The relationship between E, x and S' is, in the Bloch picture, given by the 
eigenvalue equation 

f i ( x ,  S' ) lu )=  E l u ) ,  

and the matrix elements of fi are given by (2.7), with 8 - x  and k+ S'/q:  

H,",(X, S')  
e ls ' /q  e - i  S'/ 4 2a cos(x +27rP) 

0 
* * * .  * ' ,Its.,, 2a  cos(x,+2rrpn)' * . e's'/ 9 

0 
elsfl/4 . e-'S'/q 2a cos(x + 2 4 q )  

Equivalently, in the Floquet picture, this relationship is given by 

2 cos S' = Tr A?€ (x, A )  

where 

A ? E ( ~ , h ) = f ( x + 2 + ( q - l ) , E )  . . .  T ( x + ~ . T T ~ ,  E ) f ( x , E ) ,  

f ( x ,  E )  = ( E  -2; COS x ;l). 

The phase change y ( E )  is given by a line integral in phase-space around a phase 
trajectory 
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In the Bloch picture, the vector u(x,  S’)  is an eigenvector of f i ( x ,  S‘), given by (6.3), 
and in the Floquet picture u(x,  S’) is an eigenvector of the transfer matrix 
fi(x, E ( X ,  S’), h). The matrix elements of the current operator are, in the Bloch picture 

(6.7) 

(6.8) 

l 9  
and in i l * - ~ * ~ : : : : : .  the Floquet picture 

0 e-iS’/q ,iS‘/q 

0 

0 . e-is‘/q . * eis’/q 

. .  
Jnnz = s 

0 
0 e-iS’/q . eiS‘/q 

i=( O i  ). 
-i 0 

- . .  

The final result, the Bohr-Sommerfeld quantisation condition, is (cf 5.13) 

S’(x, E, h) dx=27r[n +;-(1/271-) sign(h)y(E)] - Ihl (6.9) LE 
(remember that h can be negative for this system). 

results. 
Now the theoretical predictions of this paper will be compared with some numerical 

Figmre 3. A plot of the spectrum of Harper’s equation, plotted for every rational p = p / 9  
with 9 =s 40. This picture illustrates the situation shown schematically in figure 2. 
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First, figure 3 gives a general illustration of the ideas discussed in this paper. This 
picture, originally published by Hofstadter (1976), is a plot of the spectrum (i.e. the 
support of E (  6, k)) of Harper’s equation for every rational value of p with denominator 
q less than 40. There are q energy bands (the central two touching when q is even). 
When p is close to a low-denominator rational, pol  qo, then the q bands are very narrow 
and cluster into qo groups, which correspond to the qo bands when /3 = ,Go =pol  qo. 
These q narrow bands are the Bohr-Sommerfeld levels discussed in this paper, slightly 
broadened by tunnelling effects. 

It is also easy to see by inspection of figure 3 that, except for po=O, 1 and Po=; ,  
the Bohr-Sommerfeld quantisation is not of the usual form, i.e. action = 2 r ( n  + 1/2)h, 
since the pattern is not symmetrical about and below the lines p = P o  (cf equation 
(6.9), which is not symmetric under h + - f i ) .  

Next, table 1 gives some comparisons of energy levels predicted using formulae 
(6.1)-(6.9), Epr: with exact levels, E,, obtained by the same method as Hofstadter, 
using high precision arithmetic. In all cases except one the broadening of these levels 
by tunnelling is smaller than the six-digit precision of the eigenvalues Eex.  The meaning 
of the columns po, qo, is given by equation (6.1), n is the quantum number of the Bohr 
quantised level (as in equation (6.9)) and nb labels the energy band within which this 
level lies. The subscripts t and b of nb mean that n is counted from the top and bottom 
of the energy band respectively. Finally, AE is the separation of the closest neighbour- 
ing energy level, and gives a scale against which the error IE,, - E,,] of the predictions 
should be compared. 

Finally, table 2 shows how the error in the predicted levels decreases very rapidly 
as h decreases. These results suggest that the error of the prediction is O(h3)  compared 
to the separation of levels which decreases as O(h).  

Table 1. Comparison of predicted energy levels E,, with exact levels Eex.  For full 
description see 5 6 of text. For all values in this table, (I = 1.  

1 3  
1 3  
1 3  
1 3  
1 3  
1 3  
1 4  
1 4  
1 3  
1 3  

3 7  
3 7  

11200 
1/200 
1/200 
1/200 
1/200 
1/200 
11300 
1/300 
21387 
21387 

1/1960 
1/1960 

I t  
It 
It 
2b 
3t 
3t 
2t 
2t 
It 
It 

3b 
3b 

7. Concluding remarks 

1 
6 
IO 

1 
I 
5 
1 
5 
1 
7 

I 
5 - 

-1.99435 
-2.29301 
-2.40938 
-0.61 889 

2.70954 
2.58201 

-0.28742 
-0.58727 
- 1.994 I4 
-2.33540 

- 1.58070 
- 1.60464 

- 1.99277 
-2.29209 
-2.40860 
-0.62003 

2.71090 
2.58442 

-0.28 I7 I 
-0.58578 
- 1.99252 
-2.33427 to 
-2.33432 
- 1.58068 
- 1.60460 

0.001 58 
0.00092 
0.0007 8 
0.001 14 
0.00 136 
0.00241 
0.0062 1 
0.00148 
0.00 I62 
0.001 

0.00002 
0.00004 

0.08395 
0.04154 
0.02295 
0.101 29 
0.03379 
0.02839 
0.10782 
0.04299 
0.0863 1 
0.035 

0.00623 
0.00557 

1.6791 
0.6868 

-0.43 13 
- 1.6406 
-2.2567 
-3.5757 

1.4364 
0.0375 
1.6786 
0.4193 

-0.5570 
-0.6380 

This paper has demonstrated a novel type of Bohr-Sommerfeld quantisation, involving 
a non-holonomic connection ?le for transporting the eigenvectors U of the matrix- 
valued Hamiltonian function H ( x ,  p )  around a circuit in phase space. 
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Table 2. Illustrating the rapid improvement of the predictions as ft decreases. All the 
results in this table refer to the case a = 1, po= 1 ,  qo=3,  nb = 3t. Using equation (A9), the 
limiting value of y (  E )  at the edge of the band concerned is predicted to be yo = - 1.8200. 
The values of y (  E )  for the n = 1 states approach this limiting value. 

n Ab E,, E,, lEpr-Eexl Y ( E )  

I 1/100 2.68295 2.69043 0.00748 0.06637 -2.9737 
1/200 2.70954 2.71090 0.00136 0.03379 -2.2567 
1/400 2.72120 2.72140 0.00020 0.01710 -1.9760 
l / S O O  2.72671 2.72671 0.00000 0.00859 -1.8554 

5 1/200 2.58201 2.58442 0.00241 0.02839 -3.5757 
1/400 2.65491 2.65514 0.00023 0.01575 -2.3862 
1/800 2.69286 2.69288 0.00002 0.00826 -2.0428 

The phase change y of the eigenvector has been determined in terms of the line 
integral of the connection (5.2). In principle, y could also be expressed as the integral 
of the curvature of the connection over the area enclosed by C. In practice, however, 
this is not useful, since this curvature is singular on the line S’ = 0, and in any case 
for a computer calculation of y ( E )  the line integral is much easier to evaluate. 

The method given in this paper is easily adapted to the problem of determining 
the Bohr-Sommerfeld quantisation condition for Bloch electrons in a weak magnetic 
field. It is well known that this condition takes the form 

sik = 2 ~ ( e B / h ) ( n  +r), (7.1) 

where sik is the area enclosed by a section through the Fermi surface perpendicular 
to the magnetic field (Onsager 1952). The constant r is not determined by Onsager’s 
argument, and has previously only been determined exactly by very elaborate methods 
based on the effective Hamiltonian approach (see e.g. Roth 1966). The main result is 
that, for crystals with centres of inversion, r is always equal to f (plus terms of higher 
order in the magnetic field), but when there is not a centre of inversion there is an 
additional component of r given by an integral analogous to (5.3). 

It is worthwhile to note that two other results have appeared recently which involve 
a non-holonomic connection rule for the phase of the eigenvector of a matrix. 

Firstly Mead and Truhlar (1979) and Berry (1984) calculate the phase change of the 
wavefunction of a system after being varied slowly around a cyclic path in the space of 
some parameters of the system. In terms of the matrix product calculation of 0 3 of this 
paper, this corresponds to considering a string of slowly varying unitary evolution 
operators, i.e. to the case J =  i in equation (3.20). 

Secondly Thouless e? a1 (1982) have considered the quantised Hall effect in samples 
with a weak periodic potential with a rational number of flux quanta per unit cell. 
They show that the Hall conductance of a full sub-band is e2/257h times the phase 
change when the wavefunction is transported around the edge of the magnetic Brillouin 
zone using the adiabatic connection rule of Mead and Berry. Because the magnetic 
Brillouin zone is topologically a torus, they are able to show that this phase change 
is 257 times an integer. Simon (1983) has exhibited a connection between the work of 
Berry and Mead, and that of Thouless er a l ,  and has emphasised the importance of 
the idea of a non-holonomic connection. 

The formula given in 0 3 for the product of a string of slowly varying matrices is 
a very general result, and may have many uses other than those considered here. 
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Appendix 

This appendix demonstrates the result that r ( E )  approaches a finite limit yo at the 
top or bottom of an energy band, by calculating this limit in terms of the transfer 
matrices. 

The transfer matrix is assumed to be known in the form of a series expansion: 

G ( x , E , h ) = ( C  A B D)=(co A, DJ Bo 

where xo and Eo are the values of x and E corresponding to the top or bottom of the 
energy band E = E(X, s’) when f i  = 0. Also, it is assumed that the first few coefficients 
in the expansion of Tr G are known 

2 cos S’ = Tr A?( x, E, h )  = 2 + r (  x - xo)2 - s( E - Eo) - th. (A2) 

From equation (2.8), it can be seen that r = q2aq. From (A2), the momentum S’ is 
given by 

S’* = s( E - Eo) - r( x - xo)2 - th, (A31 

in the neighbourhood of the band edge. The action S ( E )  for the phase trajectory of 
energy E is given by 

Now the phase change ? ( E )  of the eigenvector U of G will be found, in the 
neighbourhood of the energy E,,. The transfer matrix k of (Al)  can be diagonalised 
as follows 

G(x,  E, h )  = 2-952, 

Now, for the eigenvector corresponding to the eigenvalue e”’, the differential element 
of the phase change y is (retaining only lowest order terms) 

D-1 d D  
dy, = Im d PI I = I r n ( d 2 2 - ’ )  - - dC---. 

‘ I  - 2CS’ 2 S’ 
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Using the relationship (A3) between x, S’ and E, for any quantity A = A(x, E )  

Using (A7) in (A6), to lowest order 

dy,  = yX dx + 7.y dS’, 

yx = {[(Do - 1)/2C0]Cx - 4  d,}/ S‘+ O( 1)  = K /  s’ + o( I ) ,  

7s. = O( 1). 

(A8) 

Also, it is easy to show that dy,(x, -9) = dy,(x, S ’ ) .  The phase change is then given 
by, in the limits x, S’ ,  h --* 0: 

i.e. 

yo= 2TK/(uq”q, K = [ ( D o -  1)/2C0]c, -; d,. (A101 

The Bohr-Sommerfeld quantisation condition in the neighbourhood of the band edge 
then becomes (using (5.13), (A4), (A9)) 

E = E,+ ( l / s )  * 2a4qh[n +$ - ( K /  a4/*q)  sign(h) + t/2.rr], 

n > ( K / a ‘ / ’ q )  . sign(h) -4. 

(‘41 1) 

where the level number satisfies the inequality 

(A121 

References 

Bellissard J and Simon B 1982 J. Funct. Anal. 48 408-19 
Berry M V 1984 Roc .  R. Soc. A392 45-57 
Harper P G 1955 Roc .  Phys. Soc. A68 874-8 
Hofstadter D R 1976 Phys. Reo. B14 223949 
Khinchin A Ya 1964 Continued Fractions (Chicago: University Press) 
Landau L D and Lifshitz E M 1958 Quantum Mechanics ch 7 (Oxford: Pergamon) 
Mead C A 1979 J. Chem. Phys. 70 2276-83 
Mead C A and Truhlar D G 1979 J. Chem. Phys. 70 2284-96 
Onsager L 1952 Phil. Mag. 43 1006-8 
Roth L M 1966 Phys. Rev. 145 434-48 
Simon B 1982 Adv. Appl. Maths. 3 463-90 
- 1983 Phys. Reo. Left. 51 2167-70 
Sokoloff J B 1981 Phys. Rev. B23 203941 
Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405-9 
Wilkinson M 1984 Roc .  R. Soc. A391 305-50 


